- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Denlinger, Jonathan_D (2)
-
Ahn, Junyeong (1)
-
Alqasseri, Gadeer (1)
-
Bediako, D_Kwabena (1)
-
Boswell, Matt (1)
-
Broyles, Christopher (1)
-
Cao, Huibo (1)
-
Chowdhury, Sugata (1)
-
Craig, Isaac_M (1)
-
Dinh, Thao (1)
-
Erodici, Matthew_P (1)
-
Fang, Wuzhang (1)
-
Fender, Shannon_S (1)
-
Frontzek, Matthias_D (1)
-
Garner, Jalen (1)
-
Gonzalez, Oscar (1)
-
Goodge, Berit_H (1)
-
Guo, Ken (1)
-
Hao, Yiqing (1)
-
Hoffman, Jennifer_E (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Superlattice formation dictates the physical properties of many materials, including the nature of the ground state in magnetic materials. Chemical composition is commonly considered to be the primary determinant of superlattice identity, especially in intercalation compounds. Nevertheless, in this work, we find that kinetic control of superlattice growth leads to the coexistence of disparate crystallographic domains within a compositionally perfect single crystal. We demonstrate that Cr1/4TaS2is a noncollinear antiferromagnet in which scattering between majority and minority superlattice domains engenders complex magnetotransport below the Néel temperature, including an anomalous Hall effect. We characterize the magnetic phases in different domains, image their nanoscale morphology, and propose a mechanism for nucleation and growth using a suite of experimental probes coupled with first-principles calculations and symmetry analysis. These results provide a blueprint for the deliberate engineering of macroscopic transport responses via microscopic tuning of magnetic exchange interactions in superlattice domains.more » « less
-
Broyles, Christopher; Mardanya, Sougata; Liu, Mengke; Ahn, Junyeong; Dinh, Thao; Alqasseri, Gadeer; Garner, Jalen; Rehfuss, Zackary; Guo, Ken; Zhu, Jiahui; et al (, Advanced Materials)Abstract Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations—to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo‐interacting topological antiferromagnet is reported in the vdW 5felectron system UOTe. It has a high antiferromagnetic (AFM) transition temperature of 150 K, with a unique AFM configuration that breaks the combined parity and time reversal (PT) symmetry in an even number of layers while maintaining zero net magnetic moment. This angle‐resolved photoemission spectroscopy (ARPES) measurements reveal Dirac bands near the Fermi level, which combined with the theoretical calculations demonstrate UOTe as an AFM Dirac semimetal. Within the AFM order, the presence of the Kondo interaction is observed, as evidenced by the emergence of a 5fflat band near the Fermi level below 100 K and hybridization between the Kondo band and the Dirac band. The density functional theory calculations in its bilayer form predict UOTe as a rare example of a fully‐compensated AFM Chern insulator.more » « less
An official website of the United States government
